Ryan Vinroot
(College of William and Mary)

Real-valued characters of finite reductive groups

The main topic of this talk will be a result which is joint work with Bhama Srinivasan (U. Illinois–Chicago). Let G be the group of F_q-points of a connected reductive group with connected center defined over a finite field F_q with q elements. Let χ be an irreducible complex character of G, with Jordan decomposition (Lusztig parameters) given by (s, ψ), with s semisimple in the dual group G^*, and ψ a unipotent character of its centralizer. We prove that χ is real-valued if and only if (s, ψ) is G^*-conjugate to $(s^{-1}, \bar{\psi})$. The main tool is a result of Digne and Michel which describes the Jordan decomposition map as being unique with respect to a list of 8 properties. Further, we will discuss possible extensions of this method to understand the action under an arbitrary Galois element, and evaluating Frobenius-Schur indicators.