Orbit coherence in permutation groups
Mark Wildon (Royal Holloway)

Let G be a permutation group acting on a set Ω. For $g \in G$, let $\pi(g)$
denote the partition of Ω given by the orbits of g. The set of all partitions of
Ω is naturally ordered by refinement and admits lattice operations of meet
and join. My talk concerns the groups G such that the partitions $\pi(g)$ for
g $\in G$ form a sublattice. This condition is highly restrictive, but there are
still many interesting examples. These include centralisers in the symmetric
group $\text{Sym}(\Omega)$ and a class of profinite abelian groups which act on each
of their orbits as a subgroup of the Prüfer group. I shall also describe a
classification of the primitive permutation groups of finite degree whose set
of orbit partitions is closed under taking joins, but not necessarily meets, and
outline a proof that the automorphism group of the infinite rooted binary
tree has this property of join-coherence. This talk is on joint work with
John R. Britnell (Imperial College).